Biogenic Amines and the States of Sleep
Michel Jouvet
Science 163 (862) pages : 32-41 (1969)


The Four Major Concepts

Biogenic Amines and the Sleep States

Insomnia Following Selective Decrease of Cerebral Serotonin

The Problem of Paradoxical Sleep



Printable version

The Problem of Paradoxical Sleep

The relationship between slow-wave sleep and paradoxical sleep is not a simple one. On the one hand there appears to be a functional link between the two. Thus, after destruction of the raphe system, paradoxical sleep appears only when slow-wave sleep has reached a certain daily threshold ( 15 percent) (Fig. 5). Similarly, following the injection of p-chlorophcnylalanine, the rate of occurrence of paradoxical sleep is closely related to the hrain concentration of serotonin (44). These facts lead to the hypothesis that serotonergic mechanisms involved during slow-wave sleep act as priming mechanisms for the triggering of paradoxical sleep (46). It is probable that these mechanisms are located in the caudal part of thc raphe system, since destruction of the caudal raphe leads to a very severe suppression of paradoxical sleep (relative to slow wave sleep), whereas destruction of th rostral raphe has little effect on paradoxical sleep (which may appear in the absence of slow-wave sleep).

On the other hand it has been revealed that the structures directly responsible for paradoxical sleep are located outside the structures (raphe nuclei) responsible for slow-wave sleep. By suppressing paradoxical sleep through limited lesioning of the dorso ateral pontine tegmentum (a procedure that does not interfere with slow-wave sleep), it was demonstrated that certain pontine structures different from the raphe system are essential to paradoxical sleep (50, 51).

Because monoamine oxidase inhibitors were shown to have the strongest selective suppressing effect upon paradoxical sleep, we undertook the re evaluation of previous results in the light of new findings obtained by histochemical techniques. The nuclei of the locus coeruleus, which were shown to be composed almost exclusively of monoamine oxidase-containing and noradrenalin-containing cells (37,52), were the target (Fig. 4). When a monoamine oxidase inhibitor (nialamide) is administered in the rat or the cat, the resulting selective suppression of paradoxical sleep is found to be correlated with the disappearance of monoamine oxidase staining in the locus coeruleus (29, 53). Moreover, the bilateral destruction of these nuclei produces a total selective suppression of paradoxical sleep (54, 55), whereas control lesions placed rostrally, medially, laterally, or caudally do not affect paradoxical sleep (Table 2). Only lesions immediately ventral to the locus coeruleus nuclei at the level of the nucleus reticularis pontis caudalis which probably involves efferent path ways) suppresses paradoxical sleep (55).

The fact that noradrenalin-containing nerve cells are located in the locus coeruleus suggests that noradrenergic mechanisms may play a role in paradoxical sleep. Destruction of both nuclei decreases the noradrenalin concentration significantly and selectively in rostral parts of the brain (55) (Table 2). In addition, numerous drugs which act upon noradrenalin synthesis may selectively suppress paradoxical sleep (56). This has been shown (57) with alpha-methyl p-tyrosine, which inhibits the synthesis of brain catecholamines at the level of tyrosine hydroxylase (58), and with di sulfiram (59), which impairs the synthesis of noradrenalin at the level of dopamine-beta-hydroxylase (60). On the other hand, alpha-methyl-m-tyrosine and alpha-methyldihydroxyphenylalanine, which may act as false transmitters (61), also have strong suppressive effects on paradoxical sleep in the cat (29, 62). Another indirect evidence of the intervention of a noradrenergic mechanism is the finding that there is an increased turnover of cerebral noradrenalin dur ing the rebound of paradoxical sleep which follows its selective deprivation in the rat (63).

In addition to noradrenalin, cholinergic mechanisms have been implicated in paradoxical sleep by certain pharmacological evidence. Atropine ( 1 to 2 milligrams per kilogram) suppresses paradoxical sleep in the cat (50, 64, 65), whereas eserine may facilitate it in pontile cats (50, 64). Direct injection of acetylcholine or carbachol in the vicinity of the nucleus of the locus coeruleus triggers paradoxical sleep in normal cats (66) . As indicated at the level of the peripheral nervous system (67), it is thus possible that acetylcholine may act as a triggering mechanism for noradrenergic mechanisms.

In sum, neuropharmacological, neurophysiological, and histochemical data provide a partial understanding of the succession of events involved in paradoxical sleep. Priming mechanisms lo ated in the caudal part of the raphe system act upon a target in the dorsolateral pontine tegmentum where densely packed monoamine oxidase containing and noradrenalin-containing neurons are located and where paradoxical sleep is triggered. The occur rence of paradoxical sleep may be inhibited by at least three categories of drugs (Fig. 7). This fact suggests that the paradoxical-sleep mechanism requires three keys in order to operate (deaminated serotonin catabolite, acetylcholine, and noradrenalin). Such a "fail-safe" mechanism contributes to the effectiveness of the organism in that it prevents the intrusion into waking of the hallucinatory processes involved in dreaming.

Group Number in Group Amount of Slow Wave Sleep (%) Amount of Paradoxical Sleep (%) % of locus coeruleus destroyed % of cerebral serotonin P* % of cerebral noradrenalin P*
A 13 43+-2 9+-0.8 0 89+-8 - 96.5+-8 -
B 15 40+-3 0.2+-0.1 70+-4.5 86+-4 NS 43+-6 .001
C 4 42+-6 4.3+-1 27+-5 120+-4 NS 85+-11 NS
D 6 46+-4 8.5+-2 11+-6 73+-9 NS 78+-4 NS

* Student's t-test values for P obtained by comparison with group A; NS; not significant. Each P column refers to the column that immediately precedes it.

Table 2. comparison, for various groups of cats with brain lesions, of the amounts of slow wave sleep and paradoxical sleep, expressed as (i) a percentage of recording time (10 to 13 days); (ii) the percentage of the nucleus locus coeruleus destroyed surgically; and (iii) the amounts of serotonin and noradrenalin in the brain rostral to the lesion, expressed as percent ages of the amounts in the brains of normal control cats. The group divisions are as follows: (A) cats that had undergone sham operations, used as controls in Student's t-test, (s) cats with total or subtotal hilateral lesions of the nucleus locus coeruleus that resulted in total suppression of paradoxical sleep; (c) cats with lesions lateral to the nucleus locus coeruleus involving the nuclei parahrachialis medialis and lateralis; (D) cats with lesions caudal to the nucleus locus coeruleus involving the vestibular nuclei. The percentages are mean values for an entire group, plus standard deviation.

Next page

  • 1- G Moruzzi and H. W. Magoun
    Electroencephalog. Clin. Neurophysiol. 1, 445 (1949).
  • 2 - F. Bremer
    in Brain Mechanisms and Consciousness, E. D. Adrian, F. Bremer, H. H. Jasper, Eds. (Blackwell, Oxford, 1954), pp. 137-162; F. Bremer, Schweiz. Arch. Neurol. Neurochir. Psychiat. 86, 34 (1960); N. Kleitman, Sleep and Wakefulness (Univ. of Chicago Press, Chicago, 1963); D. B. Lindsley, in Handbook of Physiology and Neurophysiology, J. Field H. W. Magoun, V. E. Hall, Eds.(American Physiological Society, Washington, 20 D.C., 1960), vol. 1, p. 1553; for the historical development of the passive hypothesis of sleep, see G. Moruzzi, Proc. Amer. Phil. Soc. 108, 19 (1964).
  • 3- See P. L. Parmeggiani
    in Progress in Brain Research, Topics in Basic Neurology, W. Batgmann and J. L. Schadé, Eds. (Elsevier, Amsterdam, 1964), references pp. 180-190.
  • 4 - The mean percentages of slow-wave sleep and paradoxical sleep in the adult cat are, respectively, 53 and 16 percent of a 24-hour day; the mean duration of paradoxical-sleep episodes is 6 minutes. See F. Delorme, P. Vimont, D. Jouvet, Compt. Rend. Soc. Biol. 158, 2128 (1964); M. B. Sterman, T. Knauss, D.Lehmann, C. D. Clemente Electroencephalog. Clin. Neurophysiol. 19, 509 (1965).
  • 5 - C. Batini, G. Moruzzi, M. Palestini, G. F Rossi, A. Zanchetti
    Science 128, 30 (1958); C Batini F Magni, M. Palestini G F. Rossi A. Zanchetti, Arch. Ital. Biol. 97,13 (1959).
  • 6 - M. Bonvallet and V. Bloch
    Science 133, 1133 (1961);G. F Rossi, K. Minobe, O Candia Arch. Ital. Biol. 101, 470 (1963)- A. Camacho Evangelista and F. Reinoso-Suarez, Science 146, 268 (1964); G. Moruzzi, Harvey Lectures Ser. 58, 233 (1963); , Electroencephalog. Clin. Neurophysiol. 16, 2 (1964).
  • 7 - F. Fontana
    Dei moti pell'iride (Giusti, Lucca, 1765); R. Klaue, J. Psychol. Neurol. Leipzig 47, 510 (1937).
  • 8 - E. Aserinsky and N. Kleitman
    J. Appl. Physiol. 8, 1 (1955); W, C. Dement and N. Kleitman, Electroencephalog. Clin. Neurophysiol. 9, 673 (1957); W. C. Dement, ibid. 10, 291 (1958), M. Jouvet, F. Michel, J. Courjon, Compt. Rend. Soc. Biol. 153, 101 (1959).
  • 9 - F. Snyder
    Amer. J. Psychiat. 122, 377 (1965); W. C. Dement, in New Directions in Psychology, T, M. Newcomb, Ed (Holt, Rinehart, and Winston, New York, 1965), vol. 2, p. 135; M. Jouvet Physiol. Rev. 47, 117 (1967); W. P. Koella Sleep (Thomas, Springffeld, ID.,1967 ); E. Hartmann, The Biology of Dreaming (Thomas, Springfield, 111., 1967).
  • 10 - Slow-wave sleep is also called light sleep,deep sleep, synchronized sleep, and non-rapid eye-movement sleep.
  • 11 - Paradoxical sleep is also called activated sleep, deep sleep, desynchronized sleep, rapid eye-moyement or REM sleep, para sleep, and rhombencephalic sleep. Since dreaming occurs almost exclusively during this sleep state, it is also called dreaming sleep or D-state.
  • 12 - M. Jeannerod J. Mouret M. Jouvet
    J. Physiol. Paris 57, 255 (1965); F. Michel, M. Jeannerod, J. Mouret, A. Rechstchaffen, M. Jouvet Compt. Rend. Soc. Biol. 158, 103 (1964;- J. Mouret, M. Jeannerod, M. Jouvet, J. Physiol. Paris 55, 305 (1963); M. Jeannerod, thesis. University of Lyons (1965).
  • 13 - D. C. Brooks and E. Bizzi
    Arch. Ital. Biol. 101, 648 (1963); D. C. Brooks, paper presented before the Association for the Psychophysiological Study of Sleep, Denver, 1968.
  • 14 - D. Peyrethon-Duzan, J. Peyrethon, M. Jouvet
    Comp. Rend. Soc. Biol. 161, 2530 (1967).
  • 15 - E. Bizzi and D, C. Brooks
    Arch. Ital. Biol. 101, 666 (1963), O. Benoit J. Physiol. Paris 56, 259 (1964); O, Pompeiano and A. R. Morrison, Arch. Ital. Biol. 103, 569 (1965); M. Jouvet, M. Jeannerod, J. F. Delorme, Compt. Rend. Soc. Biol. 159, 1599 (1965).
  • 16 - J. L. Valatx, D. Jouvet, M. Jouvet
    Electroencephalog. Clin. Neurophysiol. 17, 218 (1964); J. Cadilhac, T. Passouant-Fontaine, P. Passouant, J. Physiol. Paris 54, 305 (1962); D. Jouvet-Mounier, thesis University of Lyons 1968); and L. Astic, Compt. Rend. Soc. Biol. 156, 1411 (1967); A. Shimizu and H. E. Him wich, Electroencephalog. Clin. Neurophysiol. 24, 307 (1968) H. P. Roffwarg, J. N. Muzio, W. C. Dement Science 152, 604 (1966).
  • 17 - J. Peyrethon and D. Peyrethon-Duzan
    Compt. Rend. Soc. Biol. 161, 2533 (1967).
  • 18 - H. Hermann, M. Jouvet, M. Klein
    Compt. Rend. 258, 2175 (1964); E. S. Tauber, H. P Roffwarg, E. D. Weitzman, Nature 212, 1612 (1966)- A. Rechtschaffen, M. Bassan, S. Ledecky-Tanecek, paper presented before the Association for the Psychophysiological Study of Sleep, Denver, 1968.
  • 19 - M. Klein F. Michel, M. Jouvet
    Compt. Rend. Soc. Biol. 158, 99 (1964); T. Ookawa and J. Gotoh, Poultry Sci., 43, 1603 (1964); V. Tradardi, Arch. Ital. Biol. 104, 516 (1966; M. A. Corner, J. J, Peters, P. Rutgers van der Loeff, Brain Res, 2, 274 (1966).
  • 20 - F Snyder
    Amer. J. Psychiat. 123 121 (1966).
  • 21 - E. Hartmann, J. Bernstein, C. Wilson
    Psychophysiology 4, 389 (1968).
  • 22 - P. Albrecht, M. B. Vissher, J. J. Bittner, F. Halberg
    Proc. Soc. Exp. Biol. 92, 703 (1956); L. E. Scheving, W. H. Harrison, P. Gordon,J. E. Pauly, Amer. J. Physiol. 214, 166 (1968) .
  • 23 - F. O. Schmitt
    in Macro-molecular Specificity and Biological Memory, F. O. Schmitt,Ed. (M.l.T. Press, Cambridge, 1962).
  • 24 - W. Dement
    Science 131, 1705 (1960); D. Jouvet, P. Vimont, F. Delorme, M. Jouvet, Compt. Rend. Soc. Biol. 158, 756 (1964); P. Vimont, D. Jouvet, J. F. Delorme, Electroencephalog. Clin. Neurophysiol. 20, 439 (1966); W. C. Dement, P, Henry, H. Cohen, J. Ferguson, Sleep and Altered States of Consciousness, S. S. Kety E. V. Evarts, H. L. Williams, Eds. (Williams and Wilkins, Baltimore,1967) .
  • 25 - C. E. Spooner and W. D. Winters
    Experientia 21, 256 (1965); In. J. Neuropharmacol. 5, 217 (1966); ibid. 6, 109 (1967).
  • 26 - W. P. Koella C. M. Trunca, J. S. Szicman
    Life Sci. 4, 1;3 (1965); W. P. Koella and J.S. Czicman, Amer. J. Physiol. 211, 926 (1966); I X. Lebedur and R. Tissot, Electroencephalog. Clin. Neurophysiol. 20 (1965).
  • 27 - W. Feldberg and S. L. Sherwood
    J. Physiol. London 123, 148 (1954)- P. B. Bradley and A. J. Hance, ibid. 132, 50 (1956); E. R. John, B. M. Wenzel, R. D. Tschirgi, J. Pharmacol. Exp.Therap. 123, 193 (1958).
  • 28 - D. F. Bogdanski, H. Weissbach, S. Udenfriend
    J. Pharmacol. Exp. Therap. 122, 182 (1958); M. Monnier and R. Tissot, Helv. Physiol. Pharmacol. Acta 16 255 (1958); E. Costa, G. R. Pscheidt, W. G. van Meter, H.E. Himwich, J. Pharmacol. Exp. Therap. 130,81 (1960).
  • 29 - F. Delorme
    thesis, University of Lyons (1966).
  • 30 - M. Jouvet
    in Sleep and Alrered States of Consciousness, S, S. Kety, E. V. Evarts, H. L. Williams, Eds. (Williams and Wilkins, Baltimore, 1967),
  • 31 - B. J. Key and E. Marley
    Electroencephalog. Clin. Neurophysiol. 14, 90 (1962); C. E. Spooner and W. D. Winters, Int. J. Neuropharmacol. 6, 109 (1967); M. Momnier and R. Tissot, Helv. Physiol. Pharmacol. Acta 16,255 (1958).
  • 32 - H. Blaschko, K. H. Burn, H. Langemann
    Brit. J. Pharmacol. 5, 431 (1950).
  • 33 - V. Havlicek
    Int. J. Neuropharmacol. 6, 83 (1967) .
  • 34 - The state of "tranquility" produced by reserpine led to the hypothesis that serotonin could be involved in parasympathetic (trophotropic) mechanisms of sleep; see B. A. Brodie. P. A. Shore, A. Pletscher, Science 123, 993 (1956), B. A. Brodie, K. F. Finger, F.B. Orlans, G. P. Quinn, F. Sulser, J. Pharmacol. Exp. Therap. 129, 250 (1960).
  • 35 - J. Matsumoto and M. Jouvet
    Compt. Rend. Soc. Biol. 158, 2135 (1964) F. Delorme, M. Jeannerod, M. Jouvet, ibid. 159, 900 (1965).
  • 36 - M. Jouvet, P. Vimont, J. F. Delorme
    ibid p. 1595.
  • 37 - B. Falck
    in Progress in Brain Research, H.G. Himwich, Ed. (Elsevier, Amsterdam, 1964), p. 28- B. Falck N. A. Hillarp, G. Thieme, A Torp, J. Histochem. Cytochem. 10, 348 (1962); A. Dahlstrom and K. Fuxe, Acta Physiol. Scand. Suppl. 232, 1 (1964); ibid. 247, 5 (1965); K. Fuxe, Z. Zelforsch.Mikroskop. Anat. Abt. Histochemie 65, 573 ( 1965 ) .
  • 38 - A. Brodal E. Taber, F. Walberg
    J. Comp. Neurol., 239 (1960).
  • 39 - A. Heller and R. Y. Moore
    J. Pharmacol. Exp. Therap. 150 1 (1965), J. A. Harvey, A. Heller, R. Y. Moore, ibid. 140, 103 (1963); A. Heller, J. A. Haney, R. Y. Moore, Biochem. Pharmacol. 11, 859 (1962).
  • 40 - It is not surprising that, if this procedure is not followed, attempts to correlate serotonin concentrations in rostral parts of the brain with the electrical activity of the cortex after eitber midpontine transection (which leads to fast, low-voltage activity) or rostropontine transection (which leads to synchronized acticity) have produced negative results in short term experiments (R. A. Antonelll, G. Bertac cini, P. Mantegazzini, J. Neurochem. 8, 157 (1961))
  • 41 - K. B. Koe and A. Weissman
    J. Pharmacol. Exp. Therap, 154, 499 ( 1967 ) .
  • 42 - F. Delorme, L. Froment, M. Jouvet
    Compt. Rend. Soc. Biol. 160, 2347 (1966); J. Mouret, J. L. Froment, P. Bobillier, M. Jouvet, J. Physiol. Paris 59, 463 (1967). p-Chloromethamphetamin has been shown to produce a selective decrease of serotonin [A. Pletscher, G.Bartholini, H. Bruderer, W. P. Burkard, K. F. Gey, J. Pharmacol. 145, 344 (1964)]. Also, my associates and I found that this drug induces a very marked arousal which coincides with the depletion of brain serotonin. However, a secondary injection of 5-hydroxytryptophan does not restore normal sleep and has always been followed shonly by the death of the animal.
  • 43 - W. P. Koella
    paper presented before the American College of Neuropsychopharmacology, Puerto Rico, 1967.
  • 44 - J. Mouret, P, Bobillier, M. Jouvet
    Compt. Rend. Soc. Biol. 161, 1600 (1967); J. Mouret, P. Bobillier N, Frachon, A. Vilpulla, M. Jouvet European J. Pharmacol., in press; C. Torda Brain Res. 6, 375 (1967).
  • 45 - T. J Crowley, E. Smith, 0. F. Lewis
    paper presented before the Association for Psychophysiological Study of Sleep, Denver, 1968; E. D, Weitzman, M. Rapport, P. McGregor, J. Jacoby, Science 160, 1361 (1968).
  • 46 M. Jouvet and J. Renault
    Compt Rend. Soc. Biol. 160, 1461 (1966); M. Jouvet, P. Bobillier, J F. Pujol, J. Renault, ibid., p. 2343; M. Jouvet, in Advances in Pharmacology, S. Garattini and P. A. Shore, Eds. (Academic Press, New York, 1968 ); J, Renault, thesis, University of Lyons (1967).
  • 47 - These results may explain the relative insomnia following mid-pontine transections (4), since destruction of the raphe system caudal to this plane would produce the same amount of sleep (20 percent). The insomnia that follows surgical splitting of the brain stem may also be explained by these results as this procedure (sagittal transection) inevitably involves the destruction of numerous raphe neurons [F. Michel and M. P. Roffwarg, Experientia 23, 126 (1967); M. Mancia, T. Desiraju, G. S. Chhina, Electroencephalog. Clin. Neurophysiol. 24, 409 (1968)].
  • 48 - E. Hartmann and D. Freedman
    paper presented before the Association for the Psychophysiological Study of Sleep, Gainesvflle,Florida 1966- E. L. Bliss, in Sleep and Altered States of Consciousness, S. S. Kety, E.V. Evarts, H. L. Williams, Eds. (Williams and Wilkins, Baltimore, 1967).
  • 49 - E. Weiss, B. Bordwell, M, Seeger, J. Lee, W. C. Dement, J. Barchas
    paper presented before the Association for Psychophysiological Study of Sleep, Denver, 1968.
  • 50 - M. Jouvet
    Arch. Ital. Biol. 100, 125 (1962).
  • 51 - G Carli and A. Zanchett
    ibid. 103, 751 (1965)- G. Rossi Electroencephalog. Clin. Neurophysiol. 14, 428 (1962).
  • 52 - P. H. Hashimoto, T. Maeda, K, Toru, N.Shimizu
    Med. J. Osaka Univ. 12, 425 (1962).
  • 53 - J. Mouret, N. Frachon, A. Vilpulla, M. Jouvet
    Compt. Rend. Soc. Biol., in press.
  • 54 - M. Jouvet and F. Delorme
    ibid. 159, 895 (1965).
  • 55 - B. Roussel
    thesis, University of Lyons, (1967); A Buguet, P. Bobillier M. Jouvet Compt. Rend. Soc. Biol. 161, 2537 (1967).
  • 56 - It is interesting to note that, through administration for 6 to 12 weeks of synthetic diet free of phenylalanine and tyrosine (the aminoacids that are precursors of dopamine and noradrenalin) to patients with inoperable cancer, a systematic and selective decline of paradoxical sleep was obtained which was immediately reversed when tyrosine was there after added to the diet (H. L. Williams, B. K. Lester, J. D. Coulter, paper read before the Association for Psychophysiological Study of Sleep, Denver, 1968).
  • 57 - E. D. Weitzman, P. McGregor, C. Moore, J. Jacoby
    paper presented before the Association for Psychophysiological Study of Sleep, Denver, 1968; T. J. Crowley, E. S. Smith, O. F. Lewis, ibid.
  • 58 - S. Spector, A. Sjoerdsma, S. Udenfriend
    J. Pharmacol 147, 86 (1965).
  • 59 - J. L. Froment, D. Peyrethon-Duzan, M. Jouvet
    Compt. Rend. Soc. Biol., in press.
  • 60 - M. Goldstein, B. Anagnoste, E. Lauber, M.R. McKereghare
    Life Sci. Oxford 3, 763 (1964) .
  • 61 - A. Carlsson
    in Biogenic Amines, H. E. Himwich and W. A. Himwich Eds. (Elsevier Amsterdam, ]964), pp. 9-2;.
  • 62 - D. Peyrethon-Duzan, J Peyrethon, M. Jouvet
    Compt. Rend. Soc. Biol. IC2, 116 (1968).
  • 63 - J. F. Pujol, J. Mouret, M. Jouvet, J. Glowinski
    Science 159 112 (1968).
  • 64 - T. Tokizane
    in Progress in Brain Research, T. Tokizane and J. P. Schade, Eds. (Elsevier, Amsterdam, 1966).
  • 65 - N. Khazan and C. H. Sawyer
    Psychopharmacologia 5, 457 (1964).
  • 66 - R. George, W. L. Haslett, D. J. Jenden
    Int. J. Neuropharmacol. 3, 541 (1964).
  • 67 - J. H. Burn and M. J. Rand.
    J. Rev. Pharmacol. 5, 163 (1965).
  • 68 - This and our related studies are supported by a grant from the Direction des Recherches et Moyens d'Essais, l'Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, and a grant (E.O.A.R. 62-67) from the European Office of Aerospace Research. I thank B. E. Jones for invaluable assistance in editing the English version of this article.