Paradoxical Sleep - A Study of its Nature and Mechanisms
Michel Jouvet
Progress In Brain Research Vol. 18 Sleep Mechanisms 1965
TABLE OF CONTENTS
Introduction
Evidence of the duality of the states of sleep

(a) EEG and behavioural findings

(b) Phylogenetic findings

(c) Ontogenetic findings

(d) Functional findings

(e) Structural findings

Mechanisms of paradoxical sleep

(a) Producing P.S. as a reflex

(b) Results of deafferentations

(c) Role of the hypothalamus and pituitary

(d) Deprivation of P.S. in the pontile animal

(e) Effects of temperature on P.S. in the pontile animal

(f) Action of gamma-butyrolactone (G.B.L.)

(g) Osmolarity of the blood and paradoxical sleep

Discussion

(a) Duality of the states of sleep

(b) Mechanisms underlying the appearance of P.S.

Summary and Conclusions

Discussion

Figures

PRINT
Printable version

Evidence of the duality of the states of sleep

(a) EEG and behavioural findings

It is believed at the present time that slow sleep is characterized (in the chronic adult cat) by two successive EEG stages. The first is made up of cortical spindles of 15-18 c/s, the second of slow high-voltage waves of 2-4 c/s which invade the cortex and subcortical structures. These two stages are accompanied by tonic nuchal activity in the EMG and almost complete absence of eye movements. The appearance of spindles requires the integrity of the thalamus (Naquet et al. 1964), while that of slow cortical and subcortical waves necessitates the neocortex (M. Jouvet, 1962a). The mechanisms of the appareance of slow sleep have been discussed elsewhere (M. Jouvet, 1962a; Moruzzi, 1960).

Paradoxical sleep differs entirely from slow sleep in EEG, behavioural, tonic and phasic aspects.

(i) Tonic aspects (Fig. 1)

(1) EEG. ln normal adult cats not deprived of sleep, P.S. always occurs after a phase of slow sleep. Its average duration is 6 min, but periods of 15-20 min are often recorded. It represents an average proportion of 20-25% of behavioural sleep (i.e. approximately 15% of the total time). lt is characterized by fast, low-voltage neocortical, diencephalic and mesencephalic activity (20-30 c/s), similar to that of cortical activation which regularly accompanies a state of intense alertness or attention. But certain local electrical peculiarities make it possible to draw a formal distinction between the electrical cerebral activity of P.S. and that of behavioural alertness. The appearance of continuous 6-activity in the dorsal and ventral hippocampus is highly characteristic: it is more regular, more rapid (5-7 c/s) and, above all, of a more extensive topography than that observed during intense alertness (4-4.5 c/s) in the dorsal hippocampus—the presence of a 6-rhythm in the ventral hippocampus occurring only exceptionally in the waking state. A 6-rhythm has also been registered in the peri-aqueductal grey matter, the anterior portion of the pons and the limbic midbrain area (M. Jouvet, 1962a).

(2) Behavioural criteria. In contrast to slow sleep, which is not clearly defined behaviourally, the beginning and end of P.S. can be located to within a few seconds on the basis of behavioural criteria alone. The complete extinction of muscular activity, especially of the neck, is the most striking sign of the inhibition of muscular tonus that characterizes P.S. (M. Jouvet et al., 1959). Before, or some seconds after the cortical activity of P.S. begins, the lack of activity in the EMG is accompanied by a sudden dropping of the animal's head if it has been in an unsupported position during slow sleep. The end of P.S. is marked by a renewal, usually sudden, of considerable activity in the EMG, the awakening of the animal or transition back to the state of slow sleep.

(ii) Phasic aspects

Among the phasic phenomena characteristic of P.S. the eye movements are of such great importance that we shall consider them separately. But they are not in fact an isolated phenomenon and P.S. is punctuated in a strange and disordered manner by sudden movements of the ears, whiskers, limbs (flexion) and tail, and sometimes veritable clonic jerks of the muscles of the back (Fig. 2). These phasic phenomena are particularly developed in the young cat after birth and are characteristically increased after long privation of P.S.

Phasic phenomena of the oculomotor system. One of the most remarkable characteristics of P.S. is the appearance of rapid eye movements, accompanied by phasic ponto-geniculo-visual electrical activity.

Rapid eye movements (Fig. 3). Rapid eye movements occur from the beginning of cortical activation. With a frequency of 60-70 per min, they differ in speed, distribution, and pattern from ocular movements of observation during the waking state (Jeannerod and Mouret, 1963). They may be isolated or occur in short bursts of less than 5 movements (as during observation), but most characteristic are bursts of a greater number of movements, up to 50 without a pause. The ratio between the number of movements during the bursts and the total number of movements remains constant for each animal (50%). During P.S., myosis is at a maximum most of the time while the nictitating membranes are relaxed. Nevertheless, sudden mydriasis with retraction of the nictitating membranes can on occasions accompany the bursts of eye movements (Berlucchi et al., 1964). Analysis of the structures responsible for the appearance of isolated movements and bursts gave the following results (Jeannerod et al., 1965): pontile cats in which the superior colliculi were destroyed showed only isolated lateral and external movements (dependent on N. VI). In the mesencephalic cat with superior colliculi intact the larger bursts persisted. In contrast, coagulation of a zone in the superior colliculus and the mesencephalic tegmentum in intact animals suppressed these bursts. The latter were, on the other hand, very much enhanced in the totally decorticated animal. The role of the cortex is not unequivocal, for ablation of the visual cortex will decrease the number of bursts and isolated movements, sometimes to a considerable degree, whilst frontal decortication increases the number of bursts.

These observations can be summarized as follows: the rapid eye movements in P.S. are not identical with those of the waking state and persist, for example in decorticated, pontile cats, when eye movements in the waking state are completely impossible. They are also present during P.S. in kittens immediately after birth and still blind (Valatx et al., 1964). The mechanisms responsible for the rapid eye movements of P.S. must thus be different from those regulating the eyes during observation. The results suggest that these eye movements are initiated in the pons and are rendered more complex in the superior colliculi and the midbrain, whilst the process of 'cortical integration' (facilitating visual cortex and inhibiting frontal cortex) would act on this latter region.

Phasic ponto-geniculo-occipItal. activity (Fig. 4). Owing to the difficulties encountered and the slow development of a broad and systematic study of the cortical and subcortical structures under chronic conditions several years were necessary before a common link was found between the 'spontaneous' potentials observed during eye movements in P.S. First observed in the pontine reticular formation, monophasic peaks of 200 300 microV of 100 msec duration, often appearing in groups of five or six (whence their appearance as pseudo-spindles) (M. Jouvet et al., 1959), were then observed in the lateral geniculate nucleus (Mikiten et al., 1961), the occipItal. cortex (Mouret et al., 1963), the superior colliculus and oculomotor nucleus (Brooks and Bizzi, 1963; Michel et al., 1964a), and the pulvinar and parietal cortex (Hobson, 1964). The pontine and geniculate spikes are the earliest signs of incipient P.S. They can in fact precede rapid cortical activity and extinction of the nuchal EMG by several seconds. More rarely, this phasic activity can occur in fleeting bursts during slow sleep without the appearance of P.S.

Lesions of the nucleus reticularis pontis caudalis or in front of the pons, in the dorsal or central part of the brain stem, may suppress the appearance of geniculate and visual spikes during P.S. (Hobson, 1964). On the other hand, monophasic spikes persist in the pontine reticular formation (PRF) in the pontile animal during P.S. lt is thus probable that an ascending ponto-geniculo-occipItal. system, of which the topography has still to be clarified, reacts phasically during the rapid eye movements.

But the relationship between this phasic activity and the eye movements is not a simple one. Neither darkness, retinal coagulation, nor even total ablation of the eyeballs and the extrinsic muscles of the eye (Michel et al., 1964a) suppresses the pontovisual peaks, which therefore cannot be regarded as a possible feedback of retinal (on and off effect) or extrinsic muscular origin (Fig. 4). Moreover, this phasic activity precedes the eye movements by some 30-90 sec at the beginning of P.S., and the movement can occur without demonstrable spike activity, but in the majority of cases there is a relation in time between the monophasic ponto-geniculo-occipItal. spike and the activity of the extrinsic muscles of the eye. This activity appears above all as rapid phasic bursts, whilst in the waking state a tonic element occurs (Michel et al., 1964b).

It would be premature to try to correlate this phasic activity and the rapid eye movements at the present time, and it is sufficient to note the essential difference between these phenomena and those occurring during the eye movements of observation (when such phasic activity is not recorded) and especially during slow sleep, during which phasic phenomena occur neither in the motor effectors nor in the EEG.

These findings thus enable us to draw a clear distinction between P.S. and slow sleep on the basis of their EEG and tonic and phasic behavioural aspects. By these criteria P.S. appears as distinct from slow sleep as the latter is from the waking state.

But we cannot affirm on the basis of EEG methods and polygraphy alone that slow sleep and P.S. are the result of different mechanisms and structures. In order, therefore, to obtain more evidence in favour of the dualist concept for the two states of sleep ( M. Jouvet et al., 1959) we studied the possibility of differentiating them, either in the course of their phylogenic or ontogenic evolution, by selective deprivation, or by central nervous lesions.

Next page

BIBLIOGRAPHY
  1. Adey, W. R.
    (1964) ; L'élaboration et le stockage de l'information dans le système nerveux
    Actualités Neurophysiologiques, V série. M. Monnier, Editor. Masson, Paris.
  2. Bard, P., And Macht, M. B.
    (1958) ; The behaviour of chronically decerebrate cats
    Neurological Basis of Behaviour. Churchill London (p. 55-71).
  3. Berlucchi, G., Moruzzi, G., Salvi, G., And Strata, P.
    (1964) ; Pupil behaviour and ocular movements during synchronized and desynchronized sleep
    Arch. Ital. Biol., 102, 230-245.
  4. Bessman, S. P., And Skolnik, S. J.
    (1964) ; Gamma hydroxybutyrate and gamma butyrolactone. Concentration in rat tissues during anesthesia
    Science, 143, 1045-1047.
  5. Birzis, L., And Tachibana, S.
    (1964) ; Local cerebral impedance and blood flow during sleep and arousal
    Exp. Neurol., 9, 269 285.
  6. Brodal, A.
    (1957) ; The Reticular Formation of the Brain Stem. Anatomical Aspects and Functional Correlations
    Edinburgh, Oliver and Boyd.
  7. Brooks, D. C., And Bizzi, E.
    (1963) ; Brain stem electrical activity during deep sleep
    Arch. Ital. Biol., 101, 648 665.
  8. Cadilhac, J., And Passouant-Fontaine, T.
    (1962) ; Décharges épileptiques et activité électrique de veille et de sommeil dans l'hippocampe au cours de l'ontogenèse
    Physiologie de l'Hippocampe. P. Passouant, Editor. C.N.R.S. (p. 429 442).
  9. Cadilhac, J., Passouant-Fontaine, T., And Passouant, P.
    (1961) ; Modifications de l'activité de l'hippocampe suivant les divers stades du sommeil spontané chez le chat
    Rev. Neurol., 105, 171 176.
  10. Candia, O., Favale, E., Giussani, A., And Rossi, G. F.
    (1962) ; Blood pressure during natural sleep and during sleep induced by electrical stimulation of the brain stem reticular formation
    Arch. Ital. Biol., 100, 216-233.
  11. Delange, M., Castan, P., Cadilhac, J., And Passouant, P.
    (1961) ; Etude E.E.G. des divers stades du sommeil de nuit chez l'enfant. Considérations sur le stade IV ou d'activité onirique
    Rev. Neurol., 105, 176-181.
  12. Dement, W. C.
    (1958) ; The occurrence of low voltage, fast, electroencephalogram patterns during behavioral sleep in the cat
    Electroenceph. clin. Neurophysiol., 10, 291-296.
  13. Dement, W. C.
    (1960) ; The effect of dream deprivation
    Science, 13t, 1705-1707.
  14. Dement, W. C.
    (1964) ; Eye movements during sleep
    The Oculomotor System. M. B. Bender, Editor. Harper and Row, New York (p. 366-416).
  15. Dement, W. C.
    (1964) ; Does rapid eye movement sleep have a function ?
    lnternat. Symp. on the Anatomo Functional Aspects of Sleep. Lyons, 9-11 Sept. 1963; Edition C.N.R.S., in the press.
  16. Dement W. C., And Kleltman, N.
    (1957) ; The relation of eye movements during sleep to dream activity: an objective method for the study of dreaming
    J. exp. Psychol., 53, 339 346.
  17. De Robertis, E., And Gerschenfeld, H. M.
    (1961) ; Submicroscopic morphology and function of glial cells
    Int. Rev. Neurobiol., 3, 1.
  18. Edstrom, R.
    Recent developments of the blood brain barrier concept
    Int. Rev. Neurobiol. (in the press).
  19. Evarts, E. V.
    (1962) ; Activity of neurons in visual cortex of cat during sleep with low voltage fast activity
    J. Neurophysiol., 25, 812 816.
  20. Faure, J.
    (1962) ; La phase paradoxale du sommeil chez le lapin. (Ses relations neurohormonales)
    Rev. Neurol., 106, 190 197.
  21. Gerschenfeld, H. M., Wald, F., Zadunaisky, J. A., And De Robertis, E.
    (1959) ; Function of astroglia in the water-ion metabolism of the central nervous system
    Neurology, 9, 412 425.
  22. Giaquinto, S., Pompeiano, O., And Somogyi, I.
    (1964) ; Descending inhibitory influences on spinal reflexes during natural sleep
    Arch. Ital. Biol., 102, 282-308.
  23. Giarman, N. J., And Roth, R. H.
    (1964) ; Differential estimation of gamma-butyrolactone and gamma-hydroxybutyric acid in rat blood and brain
    Science, 145, 583 584.
  24. Giarman, N. J., And Schmidt, K. F.
    (1963) ; Some neurochemical aspects of the depressant action of gamma-butyrolactone on the central nervous system
    Brit. J. Pharmacol., 20, 563 568.
  25. Hermann, H., Jouvet, M., And Klein, M.
    (1964) ; Etude polygraphique du sommeil chez la tortue
    C.R. Acad. Sci. (Paris), 258, 2175 2178.
  26. Hernandez-Peon, R.
    (1963) ; Sleep induced by localized electrical or chemical stimulation of the forebrain
    Electroenceph. clin. Neurophysiol., 24, Suppl., 188-198.
  27. Hobson, J. A.
    The effect of chronic brain stem lesions on cortical and muscular activity in the cat
    Electroenceph. clin. Neurophysiol. in the press.
  28. Hobson, J. A.
    (1964) ; L'activité électrique phasique du cortex et du thalamus au cours du sommeil désynchronisé chez le chat
    C. R. Soc. Biol. (Paris), in the press.
  29. Hubel, D. H.
    (1960) ; Electrocorticograms in cats during natural sleep
    Arch. Ital. Biol., 98. 171-181.
  30. Huttenlocher, P. R.
    (1961) ; Evoked and spontaneous activity in single units of medial brain stem during natural sleep and waking
    J. Neurophysiol., 24, 451-468.
  31. Hyden, H., And Pigon, A.
    (1960) ; A cytophysiological study of the functional re]ationship between Oligodendrogial Cells and nerve cells of Deiters' nucleus
    J. Neurochem., 6, 57-72.
  32. Jeannerod, M., And Mouret, J.
    (1963) ; Etude comparative des mouvements oculaires observés chez ]e chat au cours de la veille et du sommeil
    J. Physiol. (Paris), 55, 268.
  33. Jeannerod, M., Mouret, J., And Jouvet, M.
    (1965) ; Etude de la motricité oculaire au cours de la phase paradoxale du sommeil chez le chat
    Electroenceph. clin. Neurophysiol., in the press.
  34. Jouvet, D.
    (1962) ; La phase rbombencéphalique du sommeil. Ses rapports avec l'activité onirique
    Thesis, Lyons.
  35. Jouvet, D., Valatx, J. L., And Jouvet, M.
    (1961) ; Etude polygraphique du sommeil du chaton
    C.R. Soc. Biol. (Paris), 155, 1660 1664.
  36. Jouvet, D., Vimont, P., Delorme, J. F., And Jouvet, M.
    (1964) ; Etude de la privation de phase paradoxa]e du sommei] chez le chat
    C.R. Soc. Biol. (Paris), 158, 756-759.
  37. Jouvet, M.
    (1961) ; Telencepha]ic and rhombencephalic sleep in the cat
    The Nature of Sleep, G. E. W. Wolstenholme and M. O'Connor, Editors, London (p. 188-208).
  38. Jouvet, M.
    (1962a) ; Recherches sur ]es structures nerveuses et les mécanismes responsab]es des différentes phases du sommeil physiologique
    Arch. Ital. Biol., 100, 125-206.
    TEXTE-INTEGRAL
  39. Jouvet, M.
    (1962b) ; Un appareil enregistreur automatique des phases rhombencépha]iques du sommeil chez l'animal: l'onirographe
    Rev. Neurol., 107, 269 271.
  40. Jouvet, M., Cier, A., Mounier, D., And Valatx, J. L.
    (1961) ; Effets du 4 butyrolactone et du 4 hydroxybutyrate de sodium sur l'E.E.G. et ]e comportement du chat
    C. R. Soc. Biol. (Paris) , 155, 1313 1316.
  41. Jouvet, M., And Jouvet, D.
    (1964) ; Le sommeil et les rêves chez les animaux.
    Psychiatrie animale. H. Ey, Editor. Desclée de Brovwe.
  42. Jouvet, M., Jouvet, D., And Valatx, J. L.
    (1963) ; Etude du sommeil chez le chat pontique chronique: sa suppression automatique
    C. R. Soc. Biol. (Paris), 157, 845-849.
  43. Jouvet, M., Michel, F., And Courjon, J.
    (1959) ; Sur un stade d'activité é]ectrique cérébrale rapide au cours du sommeil physio]ogique
    C.R. Soc. Biol. (Paris), 153, 1024-1028.
  44. Kanzow, E., Krause, D., And Kuehnel, H.
    (1962) ; The vasomotor system of the cerebral cortex in the phases of desynchronized E.E.G. activity during natural sleep in cats
    Pflugers Arch. ges. Physiol., 274, 593 607.
  45. Kawakami, M., And Sawyer, C. H.
    (1962) ; Effects of hormones on 'paradoxical' sleep in the rabbit
    Fed. Proc., 21, 354-359.
  46. Klein, M.
    (1963) ; Etude polygraphique et phylogénétique des différents États de Sommeil
    Thesis. Lyon, Bosc Edit.
  47. Klein, M., Michel, F., And Jouvet, M.
    (1964) ; Etude polygraphique du sommeil chez les oiseaux
    C.R. Soc. Biol. (Paris), 158, 99-103.
  48. Koch, E
    (1932) ; Die Irradiation der pressoreceptorischen Kreislaufreflexe. Klin. Wschr., 2, 225227.
  49. Lissak, K., Karmos, G., And Grastyan, E.
    (1962) ; The importance of muscular afferentation in the organization of the 'paradoxical phase' of sleep
    Abstract XXII Int. Physiol. Congr., Excerpta Medica, No. 932. Leiden.
  50. Magnes, J., Moruzzi, G., And Pompeiano, O.
    (1961) ; Synchronization of the E.E.G. produced by low-frequency electrical stimulation of the region of the solitary tract
    Arch. Ital. Biol., 99, 33-67.
  51. Magoun, H. W.
    (1950) ; Caudal and cephalic influences of the brain stem reticular formation
    Physiol. Rev., 30, 459 474.
  52. Magoun, H. W., And Rhines, R.
    (1946) ; An inhibitory mechanism in the bulbar reticular formation
    J. Neurophysiol., 9, 165-171.
  53. Michel, F., Jeannerod, M., Mouret, J., Rechtschaffen, A., And Jouvet, M.
    (1964a) ; Sur les mécanismes de l'activité de pointes au niveau du système visuel au cours de la phase paradoxale du sommeil
    C.R. Soc. Biol. (Paris), 158, 103-106.
  54. Michel, F., Rechtschaffen, A., And Vimont, P.
    (1964b) ; Activité électrique des muscles oculaires extrinsèques au cours du cycle veille sommeil
    C. R. Soc. Biol. (Paris), 158, 1 06-109.
  55. Mikiten, T., Niebyl, P., And Hendley, C.
    (1961) ; E.E.G. desynchronization during behavioural sleep associated with spike discharge from the thalamus of the cat
    Fed. Proc., 20, 327.
  56. Moruzzi, G.
    (1960) ; Synchronizing influences of the brain stem and the inhibitory mechanisms underlying the production of sleep by sensory stimulation
    Electroenceph. clin. Neurophysiol., 13 Suppl., 231-253.
  57. Moruzzi, G.
    (1964) ; Reticular influences On the E.E.G.
    Electroenceph. clin. Neurophysiol., 16, 2-17.
  58. Moruzzi, G., And Magoun, H. W.
    (1949) ; Brain stem reticular formation and activation of the E.E.G.
    Electroenceph. clin. Neurophysiol., 1, 455 473.
  59. Mouret, J., Jeannerod, M., And Jouvet, M.
    (1963) ; L'activité électrique du système visuel au cours de la phase paradoxale du sommeil chez le chat
    J. Physiol. (Paris), 55, 305-306.
  60. Naquet, R., Denavit, M., Lanoir, J., And Albe-Fessard D.
    Altérations transitoires ou définitives de zones diencéphaliques chez le chat. Leurs effets sur l'activité électrique corticale et le sommeil
    Internat. Symp. on the Anatomo-Functional Aspects of Sleep. Lyons 9 11 Sept. 1963. Edition C.N.R.S., in the press.
  61. Nauta, W. J. H.
    (1946) ; Hypothalamic regulation of sleep in rats. An experimental study
    J. Neurophysiol., 9, 285-316.
  62. Pompeiano, O.
    Ascending and descending influences of somatic afferent volleys in unrestrained cats: supraspinal inhibitory control of spinal reflexes during natural and reflexly induced sleep
    Internat. Symp. on the Anatomo-Functional Aspects of Sleep. Lyons 9-11 Sept. 1963. Edition C.N.R.S., in the press.
  63. Pompeiano, O., And Swett, J. E.
    (1962a) ; E.E.G. and behavioral manifestations of sleep induced by cutaneous nerve stimulation in normal cats
    Arch. Ital. Biol., 100, 311-342.
  64. Pompeiano, O., And Swett, J. E.
    (1962b) ; Identification of cutaneous and muscular afferent fibers producing E.E.G. synchronization or arousal in normal cats
    Arch. Ital. Biol., 100, 343-380.
  65. Pompeiano, O., And Swett, J. E.
    (1963) ; Actions of graded cutaneous and muscular afferent volleys on brain stem units in the decerebrate cerebellectomized cat
    Arch. Ital. Biol., 101, 552-583.
  66. Rechtschaffen, A., Wolpert, E. A., Dement, W. C., Mitchell, S. A., And Fisher, C.
    (1963) ; Nocturnal Sleep of Narcoleptics
    Electroenceph. clin. Neurophysiol., 15, 599 609.
  67. Reinoso-Suarez, F.
    (1961) ; Topographischer Hirnatlas der Katze.
    Darmstadt, Merck.
  68. Roffwarg, H. P., Dement, W. C., And Fisher, C.
    (1963) ; A sleep E.E.G. rapid eye movement cycle in new born infants associated with specific physiological variations
    Report of Curr. Res. Assoc. for the Psychophysiol. Study of Sleep.
  69. Rossi, G. F., Favale, E., Hara, T., Gtussani, A., And Sacco, G.
    (1961) ; Researches on the nervous mechanisms underlying deep sleep in the cat
    Arch. Ital. Biol., 99, 270 292.
  70. Rossi, G. F., Minobe, K., And Candia, O.
    (1963) ; An experimental study of the hypnogenic mechanisms of the brain stem
    Arch. Ital. Biol., 101, 470 492.
  71. Scheibel, M. E., And Scheibel, A. B.
    (1957) ; Structural substrates for integrative patterns in the brain stem reticular core. Reticular Formation of the Brain
    Henry Ford HospItal. Symposium. Boston, Little Brown and Co. (p. 31-55).
  72. Snyder, R. S., And Niemer, W. T.
    (1961) ; A Stereotaxic Atlas of the Cat Brain
    Univ. of Chic. Press.
  73. Stern, E. W., And Coxon, R. V.
    (1964) ; Osmolarity of brain tissues and its relation to brain bulk
    Anrer. J. Physiol., 206, 1-7.
  74. Tschirgt, R. D.
    (1958) ; The blood brain barrier. Biology of Neuroglia
    W. F. Windle, Editor. Springfield, C. Thomas (p. 130-138).
  75. Valatx, J. L.
    (1963) ; Ontogenèse des différents États de Sommeil. Etude comportementale E.E.G. et polygraphique chez le Chaton
    Thesis. Lyons, Annequin Edit.
  76. Valatx, J. L., Jouvet, D., And Jouvet, M.
    (1964) ; Evolution électroencéphalographique des différents états de sommeil chez le chaton
    Electroenceph. clin. Neurophysiol., 17, 218-233.
  77. Von Economo, C.
    (1929) ; Schlaftheorie
    Ergebn. Physiol., 28, 312-339.
  78. Wurtz, R. H.
    Steady potential shifts during arousal and deep sleep in the cat
    Submitted to J. Neurophysiol.