Human insulin gene insertion in mice. Effects on the sleep-wake cycle?
JEAN-LOUIS VALATX (1), PHILIPPE DOUHET (2) and DANIELLE BUCCHINI (3) J.
Sleep Res. (1999) 8, Suppl. 1, 65-68
Table of Contents

Inroduction

Materials and methods

Results

Discussion


PRINT
Printable version

1 INSERM U480, Université Claude Bernard, Lyon, France ,
2 Institut des Neurosciences CNRS URA 1488, Université Pierre et Marie Curie, Paris, France and
3 INSERM U257, Institut Cochin de Génétique Moléculaire, Paris, France

Correspondence: Jean-Louis Valatx, INSERM U480, University Claude Bernard, 8 Avenue Rockefeller, 96373 LYON Cedex 08, France.

SUMMARY

Recently, insulin synthesis and the presence of an insulin receptor have been demonstrated in the brain. Intracerebroventricular infusion of insulin causes a selective increase in the amount of slow-wave sleep. In the present study, the sleep-wake cycle of transgenic mice, with or without habenular neuronal expression of the human insulin gene, was studied to investigate the possible role of brain insulin as a sleep modulator. Slow-wave sleep duration was increased in those mice expressing human insulin in the habenula. However, it is possible that this effect was not due to expression of the insulin transgene, but to the genetic background of one of the parental strains (CBA) used for insertion of the transgene. Users of transgenic mice should be aware of this possibility and be cautious in interpreting results when hybrid embryos are used as transgene recipients.

KEYWORDS

human insulin, paradoxical sleep, slow-wave sleep, transgenic mice

INTRODUCTION

Insulin or insulin-related peptides are found in both vertebrates and invertebrates (Smit et al. 1998). Their classical role in energy (glucose) metabolism has now been extended to include many behavioural functions, such as food intake, motor activity, and memory (Mayer et al. 1990; Douhet et al. 1997; Wickelgreen 1998). The existence of insulin receptors in the brain (Pezzino et al. 1996; Doré et al. 1997) and the transport of insulin across the blood-brain barrier may explain these behavioural effects. However, using RT-PCR, amplification and in situ hybridization, both preproinsulin 11 and insulin messenger RNA have been shown to be present in the hypothalamus (Young 1986; Devaskar et al. 1993, 1994; Tsuji et al. 1996), and central insulin may therefore be involved in the regulation of several aspects of behaviour. In terms of sleep, Danguir and Nicolaēdis (1984) showed, in the rat, that intracerebroventricular insulin infusion results in a specific increase in the amount of slow-wave sleep (SWS). In transgenic mice bearing a human insulin transgene (HIg) with a modified 5'-flanking sequence (transcription unit), the length of the sequence (258, 168, or 58 nucleotides upstream of the transcription starting point; DELTA-258, DELTA-168, or DELTA-58, respectively) determines whether the transgene is expressed in the pancreatic P-islets, in the brain, or not at all (Fromont-Racine et al. 1990). In DELTA-168 mice, human insulin is preferentially expressed in the brain (Douhet et al. 1993). Cerebral insulin expression has been observed in only one structure, the median habenular nucleus. Using double immunohistochemical staining, human insulin was shown to be colocalized in cholinergic habenular neurons (Douhet et al. 1995). Given that the habenular nucleus is connected to the sleep regulating network, the aim of the present work was to study the effects of extra brain insulin on the sleep-wake cycle.

Next page>>

BIBLIOGRAPHY
  1. Cases, O., Seif, L, Grimsby, L, Gaspar, P., Chen, K., Pournin, S., Müller, U., Aguet, M., Babinet, C., Stub, J. C. and De Maeyer, E.
    Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science, 1995, 268: 1763-1766.
  2. Cases, O., Vitalis, T., Seif, L, De Maeyer, E. and Gaspar, P.
    Lack of barrels in the somatosensory cortex of monoamine oxidase A deficient mice: role of a serotonin excess during the critical period. Neuron, 1996, 16: 297-307.
  3. Danguir, J. and Nicolaidis, S.
    Chronic intracerebroventricular infusion of insulin causes selective increase of slow wave sleep in rats. Brain Res., 1984, 306: 97-103.
  4. Devaskar, S. U., Singh, B. S., Carnaghi, L. R., Rajakumar, P. A. and Giddings.
    Insulin 11 gene expression in rat central nervous system. Regul. Peptides, 1993, 48: 55-63.
  5. Devaskar, S. U., Giddings, S. J., Rajakumar, P. A., Carnaghi, L. R., Menon, R. K. and Zahn, D. S.
    Insulin gene expression and insulin synthesis in mammalian neuronal cells. J. Biol. Chem., 1994, 269: 8445-8454.
  6. Doré, S., Kar, S., Rowe, W. and Quirion, R.
    Distribution and levels of [125I]IGF-1, [125I]IGF-II and [125I]insulin receptor binding sites in the hippocampus of aged memory-unimpaired and -impaired rats. Neuroscience, 1997, 80: 1033-1040.
  7. Douhet, P., Bucchini, D., Jami, J. and Calas, A.
    Demonstration of human insulin gene expression in the medial habenula of transgenic mice by in situ hybridization and immunohistochemistry. C.R. Acad. Sci. (Paris), 1993, 316: 400-403.
  8. Douhet, P., Destrade, C., Bucchini, D. and Calas, A.
    Expression of a human insulin transgene in cholinergic neurons of the mouse medial habenula. Biol. Cell, 1995, 85: 137-146.
  9. Douhet, P., Bertaina, V., Durkin, T., Calas, A. and Destrade, C.
    Sexlinked behavioural differences in mice expressing a human insulin transgene in the medial habenula. Behav. Brain Res., 1997, 89: 259-266.
  10. Fromont-Racine, M., Bucchini, D., Madsen, 0., Desbois, R, Linde, S., Nielsen, J. H., Saulnier, C., Ripoche, M.-A., Jami, J. and Pictet, R.
    Effect of 5'-flanking sequence deletions on expression of the human insulin gene in transgenic mice. Mol. Endocrinol., 1990, 4: 669-677.
  11. Itier, J.-M., Douhet, P., Desbois, P., Joshi, R., Dandoy-Dron, F., Jami, J. and Bucchini, D.
    Human insulin gene expression in transgenic mice: mutational analysis of the regulatory region. Dilferentiation, 1996, 60: 309-316.
  12. Kitahama, K. and Valatx, J. L.
    Instrumental and pharmacological paradoxical sleep deprivation in mice: strain differences. Neuropharmacol., 1980, 19: 529-535.
  13. Mayer, G., Nitsch, R. and Hoyer, S.
    Effects of changes in peripheral and cerebral glucose metabolism on locomotor activity, learning and memory in adult male rats. Brain Res., 1990, 532: 95-100.
  14. Pezzino, V., Costantino, A., Russo, R, Gallo, D. and Papa, V.
    Insulin receptor content in tissues of normal and diabetic rats measured by radioimmunoassay. J. Endocrinol. Invest., 1996, 19: 593-597.
  15. Smit, A. B., Van Kesteren, R. E., Li, K. W., Van Minnen, J., Spijker, S., Van Heerikhuizen, H. and Geraerts, W. P.
    Towards understanding the role of insulin in the brain: lessons from insulin-related signaling systems in the invertebrate brain. Progr. Neurobiol., 1998, 54: 35-54.
  16. Tafti, M., Franken, P., Kitahama, K., Malafosse, A., Jouvet, M. and Valatx, J-L.
    Localization of candidate genetic regions influencing paradoxical sleep in mice. Neuroreport, 1997, 8: 3755-3758.
  17. Tsuji, N., Tsujimoto, K., Takada, N., Ozaki, K., Ohta, M. and Itoh, N.
    Expression of insulin receptor-related receptor in the rat brain examined by in situ hybridization and immunchistochernistry. Mol. Brain Res., 1996, 41: 250 258.
  18. Valatx, J-L.
    Enregistrement chronique des activités électriques cérébrales, musculaires et oculaires chez la souris. CR Soc. Biol. (Paris), 1971, 165: 112-115.
  19. Valatx, J-L., Bugat, R. and Jouvet, M.
    Genetic studies of sleep in mice. Nature, 1972, 238: 226-227.
  20. Valatx, J-L., Bugat, R. and Jouvet, M.
    Facteurs génétiques dans le d6terminisme du cycle veille-sommeil chez la souris. Brain Res., 1974, 69: 315-330.
  21. Wickelgreen, I.
    Tracking insulin to the mind. Sci., 1998, 280: 517-519.
  22. Young, W. S.
    III. Periventricular hypothalamic cells in the rat brain contain insulin mRNA. Neuropeptides, 1986, 8: 93-97