Human insulin gene insertion in mice. Effects on the sleep-wake cycle?
JEAN-LOUIS VALATX (1), PHILIPPE DOUHET (2) and DANIELLE BUCCHINI (3) J.
Sleep Res. (1999) 8, Suppl. 1, 65-68
Table of Contents

Inroduction

Materials and methods

Results

Discussion


PRINT
Printable version

MATERIALS AND METHODS

Animals

In a first series of experiments, nine adult male transgenic mice expressing HIg in the median habenular nucleus (DELTA- 168 mice) and six age-and sex-matched control C57BL/6 J (B6) mice were used. In a second set of experiments, two groups of transgenic mice were used, containing the HIg with altered 5'-flanking sequences resulting in either expression of the transgene only in pancreatic P-islets (DELTA-258) (n = 4) or in its nonexpression (A58) (n = 5) (Itier et al. 1996).

Surgery and recordings

Under pentobarbital anaesthesia (80 mg/kg, i.p.), mice were implanted with five cortical and three muscular electrodes, then caged singly in a Plexiglas jar and housed in a light-and temperature-controlled room (light on, 07.00 h; light off, 19.00 h; 23 + PC) with free access to water and food. All animals were treated according to guidelines approved by the European Communities Council Directive of 24 November 1986 (86/609/EEC). After 10 days of habituation to experimental conditions, continuous recordings were performed for at least 5 days, then the mice were subjected to a 10-h sleep deprivation period (09:00-19:00), using the water tank technique (Kitahama and Valatx 1980), and their recovery monitored over a further 2 days.

Data analysis

All recordings were scored visually, in 30-s epochs, for wakefulness (W), SWS, and paradoxical sleep (PS) using standard criteria (Valatx 1971). The data were then stored in a computer for further analysis using software designed in our own laboratory. The results are expressed as the mean + SD. Statistical analyses for the day, night, or full 24-h periods were performed by multiple factor analysis of variance, followed by multiple range test analysis. For sleep rebound analysis (first 24 h), Student's t-test was used, the significance level being set at P < 0.05.

Next page>>

BIBLIOGRAPHY
  1. Cases, O., Seif, L, Grimsby, L, Gaspar, P., Chen, K., Pournin, S., Müller, U., Aguet, M., Babinet, C., Stub, J. C. and De Maeyer, E.
    Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science, 1995, 268: 1763-1766.
  2. Cases, O., Vitalis, T., Seif, L, De Maeyer, E. and Gaspar, P.
    Lack of barrels in the somatosensory cortex of monoamine oxidase A deficient mice: role of a serotonin excess during the critical period. Neuron, 1996, 16: 297-307.
  3. Danguir, J. and Nicolaidis, S.
    Chronic intracerebroventricular infusion of insulin causes selective increase of slow wave sleep in rats. Brain Res., 1984, 306: 97-103.
  4. Devaskar, S. U., Singh, B. S., Carnaghi, L. R., Rajakumar, P. A. and Giddings.
    Insulin 11 gene expression in rat central nervous system. Regul. Peptides, 1993, 48: 55-63.
  5. Devaskar, S. U., Giddings, S. J., Rajakumar, P. A., Carnaghi, L. R., Menon, R. K. and Zahn, D. S.
    Insulin gene expression and insulin synthesis in mammalian neuronal cells. J. Biol. Chem., 1994, 269: 8445-8454.
  6. Doré, S., Kar, S., Rowe, W. and Quirion, R.
    Distribution and levels of [125I]IGF-1, [125I]IGF-II and [125I]insulin receptor binding sites in the hippocampus of aged memory-unimpaired and -impaired rats. Neuroscience, 1997, 80: 1033-1040.
  7. Douhet, P., Bucchini, D., Jami, J. and Calas, A.
    Demonstration of human insulin gene expression in the medial habenula of transgenic mice by in situ hybridization and immunohistochemistry. C.R. Acad. Sci. (Paris), 1993, 316: 400-403.
  8. Douhet, P., Destrade, C., Bucchini, D. and Calas, A.
    Expression of a human insulin transgene in cholinergic neurons of the mouse medial habenula. Biol. Cell, 1995, 85: 137-146.
  9. Douhet, P., Bertaina, V., Durkin, T., Calas, A. and Destrade, C.
    Sexlinked behavioural differences in mice expressing a human insulin transgene in the medial habenula. Behav. Brain Res., 1997, 89: 259-266.
  10. Fromont-Racine, M., Bucchini, D., Madsen, 0., Desbois, R, Linde, S., Nielsen, J. H., Saulnier, C., Ripoche, M.-A., Jami, J. and Pictet, R.
    Effect of 5'-flanking sequence deletions on expression of the human insulin gene in transgenic mice. Mol. Endocrinol., 1990, 4: 669-677.
  11. Itier, J.-M., Douhet, P., Desbois, P., Joshi, R., Dandoy-Dron, F., Jami, J. and Bucchini, D.
    Human insulin gene expression in transgenic mice: mutational analysis of the regulatory region. Dilferentiation, 1996, 60: 309-316.
  12. Kitahama, K. and Valatx, J. L.
    Instrumental and pharmacological paradoxical sleep deprivation in mice: strain differences. Neuropharmacol., 1980, 19: 529-535.
  13. Mayer, G., Nitsch, R. and Hoyer, S.
    Effects of changes in peripheral and cerebral glucose metabolism on locomotor activity, learning and memory in adult male rats. Brain Res., 1990, 532: 95-100.
  14. Pezzino, V., Costantino, A., Russo, R, Gallo, D. and Papa, V.
    Insulin receptor content in tissues of normal and diabetic rats measured by radioimmunoassay. J. Endocrinol. Invest., 1996, 19: 593-597.
  15. Smit, A. B., Van Kesteren, R. E., Li, K. W., Van Minnen, J., Spijker, S., Van Heerikhuizen, H. and Geraerts, W. P.
    Towards understanding the role of insulin in the brain: lessons from insulin-related signaling systems in the invertebrate brain. Progr. Neurobiol., 1998, 54: 35-54.
  16. Tafti, M., Franken, P., Kitahama, K., Malafosse, A., Jouvet, M. and Valatx, J-L.
    Localization of candidate genetic regions influencing paradoxical sleep in mice. Neuroreport, 1997, 8: 3755-3758.
  17. Tsuji, N., Tsujimoto, K., Takada, N., Ozaki, K., Ohta, M. and Itoh, N.
    Expression of insulin receptor-related receptor in the rat brain examined by in situ hybridization and immunchistochernistry. Mol. Brain Res., 1996, 41: 250 258.
  18. Valatx, J-L.
    Enregistrement chronique des activités électriques cérébrales, musculaires et oculaires chez la souris. CR Soc. Biol. (Paris), 1971, 165: 112-115.
  19. Valatx, J-L., Bugat, R. and Jouvet, M.
    Genetic studies of sleep in mice. Nature, 1972, 238: 226-227.
  20. Valatx, J-L., Bugat, R. and Jouvet, M.
    Facteurs génétiques dans le d6terminisme du cycle veille-sommeil chez la souris. Brain Res., 1974, 69: 315-330.
  21. Wickelgreen, I.
    Tracking insulin to the mind. Sci., 1998, 280: 517-519.
  22. Young, W. S.
    III. Periventricular hypothalamic cells in the rat brain contain insulin mRNA. Neuropeptides, 1986, 8: 93-97