Iontophoretic application of unconjugated cholera toxin B subunit (CTb) combined with immunohistochemistry of neurochemical substances: a method for transmitter identification of retrogradely labeled neurons
Luppi P.H., Fort P., Jouvet M.
Brain Res. 534 (1-2) pages : 209-224 (1990)
TABLE OF CONTENTS

Introduction

Materials and Methods

Materials and Methods

Results

(A) Injection sites

(B) Retrograde labeling

(C) Artefactual labeling due to uptake by fibers of passage

(D) Anterograde tracing

(E) Double immunostaining technique

Discussion

Figures

PRINT
Printable version

Results

In this report, we demonstrate that cholera-toxin B subunit (CTb) is a very sensitive retrograde tracer in the central nervous system when recognized by streptavidin-peroxidase immunohistochemistry. We further show that:
(1) injection of a small volume of CTb gives rise to small sharply defined injection sites limited to the cell group of interest associated with the labeling of all the known afferent projections,
(2) CTb is taken up, and anterogradely as well as retrogradely transported in damaged but not in intact fibers of passage,
(3) CTb can be applied iontophoretically, allowing us to study the afferents to small cell groups without any evidence of tissue necrosis in the sites and therefore without artefactual labeling due to uptake by damaged fibers of passage,
(4) the use of 4% paraformaldehyde fixative ideally suited for the preservation of most neural antigens, the addition of a 48 h colchicine treatment and the development of a double immunohistochemical method allow the biochemical characterization of the cell of origin of particular pathways in the CNS,
(5) CTb is also anterogradely transported with an extensive filling of axons and axon terminals and thereby opens up the possibility of identifying simultaneously the afferents as well as the efferents of the group of cells studied and finally
(6) the very long conservation of the preparation, the possibility of counterstaining it and of making camera lucida drawings allow easy and precise localization of the retrogradely labeled cells.

Introduction

The introduction of HRP as a retrograde tracer by Kristensson and Olsson 27 and La Vail and La Vail 31 has greatly accelerated our knowledge of neuroanatomy. Improvements of the original technique including the use of the more sensitive chromogen TMB 39-42, the microelectrophoretic delivery technique 18 and the introduction of the HRP conjugates with wheat germ agglutinin (WGA-HRP) 11 17 53 54 57 or cholera toxin (CT-HRP) 53 54 57 have further increased the sensitivity of the technique and permit one to obtain more restricted injection sites. The remarkable increase in the number of putative transmitters has further pointed to the need for methods allowing simultaneous identification of a pathway and its neurochemical identity. For this purpose, the histochemical detection of HRP and its conjugates using DABS 8 9 33 45 or stabilized TMB 46 has been successfully coupled with the immunohistochemistry of neurochemical substances on the same sections. However, such double labeling techniques present many drawbacks. The DAB induced stabilization of the TMB product greatly decreases the method's sensitivity, especially when this procedure is coupled with the non-optimal fixation required for immunohistochemistry 44 46. The sensitivity of other chromogens like DAB is very low 3 39-42. In addition, HRP, and to a lesser extent its conjugates with WGA and CTb, are rapidly degraded in the retrogradely labeled cells 53 54 57, making delicate the coupling with a colchicine treatment essential for the optimal visualization of peptidergic cell bodies 3.

The introduction of a variety of retrogradely transported fluorescent dyes raises another possibility of biochemically characterizing the cells of origin of specific pathways in the CNS 28 30. Indeed, with such tracers, the 4% paraformaldehyde fixative ideally suited for the preservation of most neural antigens can be used 12 19 47 51 56 and the tissue can be processed for immunohistochemistry to identify the neurotransmitter contents of the retrogradely labeled cells 6 19 30 47 51 56 .Moreover it is easy to distinguish between these fluorescent dyes and immunocytochemically stained cells by simply using appropriate excitation wavelengths for each. In addition, two different dyes can be combined to demonstrate collateralization of afferents 29 55. However, the majority of these fluorescent retrograde tracers are less sensitive than HRP visualized with TMB 1 23, retrogradely transported by damaged as well as undamaged fibers of passage 1 23 30 47 and leak from the labeled neurons during the immunocytochemical procedure 19 47 51 56 and microscope observations 24. Furthermore, these dyes cannot be iontophoretically injected and application by pressure damages the tissue and increases the minimum size of the injection sites 30 44.

To overcome the limitations inherent to these fluorescent tracers and the HRP conjugates, we previously introduced the use of unconjugated cholera toxin B subunit (CTb) directly recognized by immunohistochemistry 14 15 34-36 58-60, thereby avoiding the severe drawbacks of a direct histochemical detection of HRP. We demonstrated that CTb is a very sensitive retrograde tracer 34 when visualized by the immunohistochemical ABC technique of Hsu 22. We further showed that retrograde transport of CTb can be used in conjunction with immunohistochemistry of many neurotransmitters and enzymes in colchicine-treated animals perfused with 4% paraformaldehyde in order to biochemically characterize the labeled pathways 34 35.

In this report we confirm and extend the above findings. We demonstrate that :

  • the sensitivity of CTb is further increased by using unlabeled streptavidin immunohistochemistry;
  • CTb can be iontophoretically applied, thus allowing us to determine the afferents to very small groups of cells without significant tissue damage;
  • CTb is not taken up, and retrogradely and anterogradely transported by intact fibers of passage;
  • CTb is a very efficient anterograde tracer allowing thE detailed morphology of axons and terminals to be revealed.

Next page

REFERENCES
  1. Aschoff, A. and Hollander, H.
    Fluorescent compounds as retrograde tracers compared with horseradish peroxidase (HRP). I. A parametric study in the central visual system of the albino rat, J. Neuro.sci. Methods, 6 (1982) 179-197.
  2. Basbaum, A.l. and Menetrey, D.
    Wheat germ agglutininapoHRP gold: a new retrograde tracer for light- and electronmicroscopic single- and double-label studies, J. Comp. Neurol., 261 (1987) 306-318.
  3. Beitz, A.J.
    The sites of origin of the brainstem neurotensin and serotonin projections to the rodent nucleus raphe magnus, J. Neurosci., 2 (1982) 829-842.
  4. Berman, A.L.
    The Brainstem of the Cat: A Cytoarchitectonic Atlas with Stereotaxic Coordinates, Wisconsin, London, 1968.
  5. Behzadi, G., Kalen, P., Parvopassu, E and Wiklund, L.
    Afferents to the median raphe nucleus of the rat: retrograde cholera-toxin and WGA-HRP tracing, and selective D[3H]aspartate labeling of possible excitatory amino acid inputs, Neuroscience, in press.
  6. Bjorklund, A. and Skagerberg, G.
    Simultaneous use of retrograde fluorescent tracers and fluorescence histochemistry for convenient and precise mapping of monoaminergic projections and collateral arrangements in the CNS, J. Neurosci. Methods, 1 (1979) 261 -277.
  7. Bobillier, P., Seguin, S., Petitjean, F., Salvert, D., Touret, M. and Jouvet, M.
    The raphe nuclei of the cat brainstem: a topographical atlas of their efferent projections as revealed by autoradiography, Brain Research, 113 (1976) 449-486.
  8. Bowker, R.M.. Steinbusch, H.W.M. and Coulter, J.D.
    Serotonergic and pcptidergic projections to the spinal cord demonstrated by a combined retrograde HRP histochemical and immunocytochemical staining method, Brain Research, 211 (1981) 412-417.
  9. Bowker, R.M., Westlund, K.N., Sullivan, M.C. and Coulter, J.D.
    A combined retrograde transport and immunocytochemical staining mcthod lor demonstrating the origins of serotonergic projections, J. Histochem. Cytorhem., 30 (1982) 805-810.
  10. Brann, M. R. and Emson, P.C.
    Microiontophoretic injection of fluorescent tracer combined with simultaneous immunofluorescent histochemistry for the demonstration of efferents from the caudate putamen projecting to the globus pallidus, Neurosci. Lett., 16 (1980) 61-65.
  11. Brodal, P., Dietrichs, E., Bjaalie, J.G., Nordby, T. and Walberg, E
    Is lectin-coupled horseradish peroxidase taken up and transported by undamaged as well as damaged fibers in the central nervous system, Brain Research, 278 (1983) 1-9.
  12. Clements, J.R. and Beitz, A.J.
    The effects of different pretreatment conditions and fixation regimes on serotonin immunoreactivity, J. Histochem. Cytochem., 33 (1985) 778-784.
  13. Ericson, H. and Blomqvist, A.
    Tracing of neuronal connections with cholera toxin subunit B: light and electron microscopic immunohistochemistry using monoclonal antibodies, J. Neurosci. Methods, 24 (1988) 225-235.
  14. Fort, P., Sakai, K., Luppi, PH., Salvert, D. and Jouvet, M.
    Monoaminergic, peptidergic, and cholinergic afferents to the cat facial nucleus as evidenced by a double immunostaining method with unconjugated cholera toxin as a retrograde tracer, J. Comp. Neurol., 283 (1989) 285-302.
  15. Fort, P., Luppi, P.H., Sakai, K., Salvert, D. and Jouvet, M.
    The nuclei of origin of monoaminergic,peptidergic and cholinergic afferents to the cat trigeminal motor nucleus: a double labeling study with cholera toxin as a retrograde tracer J. Comp. Neurol. 301 (2) pages : 262-275 (1990).
  16. Gerfen, C.R. and Sawchenko, RE.
    An anterograde tracing method that shows the detailed morphology of neurons, their axons and terminals: immunohistochemical localization of an axonally transported plant lectin, Phaseolus vulgaris Leucoagglutinin (PHA-L), Brain Research, 290 (1984) 219-238.
  17. Gonatas, N.K., Harper, C., Mizutani, T. and Gonatas, J.O.
    Superior sensitivity of conjugates of horseradish peroxidase with wheat germ agglutinin for studies of retrograde axonal transport, J. Histochem. Cytochem., 27 (1979) 728-734.
  18. Graybiel, A.M. and Devor, M.
    Microelectrophoretic delivery technique for use with horseradish peroxidase, Brain Research, 68 (1974) 167-173.
  19. Hokfelt, T., Skagerberg, G., Skirboll, L. and Bjorklund, A.
    Combination of retrograde tracing with neurotransmitter histochemistry. In T. Hokfelt and A. Bjorklund (Eds.), Handboook of Chemical Neuroanatomy, Vol. 1, Methods in Chemical Neuroanatomy, Elsevier, New York, 1983, pp. 228-285.
  20. Holstege, G., Kuypers, H. and Dekker, J.J.
    The organization of the bulbar fibre connections to the trigeminal, facial and hypoglossal motor nuclei. II. An autoradiographic tracing study in cat, Brain, 100 (1977) 265-286.
  21. Horikawa, K. and Powell, E.W.
    Comparison of techniques for retrograde labeling using the rat's facial nucleus, J. Neurosci. Methods, 17 (1986) 287-296.
  22. Hsu, S., Raine, L. and Fanger, H.
    A comparative study of the peroxidase-antiperoxidase method and an avidin-biotin complex method for studying polypeptide hormones with radioimmunoassay antibodies, Am. J. Clin. Pathol., 75 (1981) 734-738.
  23. Illert, M., Fritz, N., Aschoff, A. and Hollander, H.
    Fluorescent compounds as retrograde tracers compared with horseradish peroxidase (HRP). II. A parametric study in the peripheral motor system of the cat, J. Neurosci. Methods, 6 (1982) 199-218.
  24. Johnson, G.D., Davidson, R.S., McNamee, K.C., Russell, G., Goodwin, D. and Holborow, E.J.
    Fading of immunofluorescence during microscopy: a study of the phenomenon and its remedy, J. Immunol. Methods, 55 (1982) 231-242.
  25. Ju, G., Han, Z. and Fan, L.
    Fluorogold as a retrograde tracer used in combination with immunohistochemistry, J. Neurosci. Methods, 29 (1989) 69-72.
  26. Katz, L.C., Burkhalter, A. and Dreyer, R.W.
    Fluorescent latex microspheres as a retrograde neuronal marker for in vivo and in vitro studies of visual cortex, Nature (Lond.), 310 (1984) 498-500.
  27. Kristensson, K. and Olsson, Y.
    Retrograde axonal transport of a protein, Brain Research, 29 (1971) 363-365.
  28. Kuypers, H.G.J.M., Catsman-Berrevoets, C.E. and Padts, R.E.
    Retrograde axonal transport of fluorescent substances in the rat's forebrain, Neurosci. Lett., 6 (1977) 127-135.
  29. Kuypers, H.G.J.M., Bentivoglio, M., Catsman-Berrevoets, C.E. and Bharos, A.T.
    Double retrograde neuronal labeling through divergent axon collaterals, using two fluarescent tracers with the same excitation wavelength which label different features of the cell, Exp. Brain Res., 40 (1980) 383-392.
  30. Kuypers, H.G.J.M. and Huisman, A.M.
    Fluorescent neuronal tracers, Adv. Cell Neurobiol., 5 (1984) 307-370.
  31. La Vail, J.H. and La Vail, M.H.
    Retrograde axonal transport in the central nervous system, Science, 176 (1972) 1416.
  32. Lechan, R.M., Nestler, J.L. and Jacobson, S.
    Immunohistochemical localization of retrogradely and anterogradely transported wheat germ agglutinin (WGA) within the central nervous system of the rat: application to immunostaining of a second antigen within the same neuron, J. Histochem. Cytochem., 29 (1981) 1255-1262
  33. Ljungdahl, A., Hokfelt, T., Goldstein, M. and Park, D.
    Retrograde peroxidase tracing of neurons combined with transmitter histochemistry, Brain Research, 84 (1975) 313-319.
  34. Luppi, P.H., Sakai, K., Salvert, D., Fort, P. and Jouvet, M.
    Peptidergic hypothalamic afferents to the cat raphe pallidus as revealed by a double immunostaining technique using unconjugated cholera toxin as retrograde tracer, Brain Research, 402 (1987) 339-345
  35. Luppi, P.H., Sakai, K.,Fort, R, Salvert, D. and Jouvet, M.
    The nuclei of origin of monoaminergic, peptidergic and cholinergic afferents to the cat nucleus reticularis magnocellularis: a double labeling study using cholera toxin as a retrograde tracer, J. Comp. Neurol., 277 (1988) 1-20.
  36. Luppi, PH., Fort, R, Kitahama, K., Denoroy, L. and Jouvet, M.
    Adrenergic input from medullary ventrolateral C1 cells to the nucleus raphe pallidus of the cat as demonstrated by a double immunostaining technique, Neurosci. Lett., 106 (1989) 29-35.
  37. Marcinkievicz, M., Morlos, R. and Chretien, M.
    CNS connections with the median raphe nucleus: retrograde tracing with WGA-Apo-HRP-gold complex in the rat, J. Comp. Neurol., 289 (1989) 11-35.
  38. Menetrey, D.
    Retrograde tracing of neural pathways with a protein gol,J complex. I. Light microscopic detection after silver intensification, Histochemistry, 83 (1985) 391-395.
  39. Mesulam, M.M. (Ed.)
    Tracing Neural Connections with Horseradish Peroxidase, Wiley, New York, 1982.
  40. Mesulam, M.M. and Rosene, D.
    Sensitivity in horseradish peroxidase immunohistochemistry : a comparative and quantitative study of nine methods, J. Histochem. Cytochem., 28 (1980) 1255- 1259.
  41. Morrell, J.I., Greenberger, L.M. and Pfaff, D.W.
    Comparison of horseradish peroxidase visualization methods: quantitative results and further technical specifics, J. Histochem. Cytochem., 29 (1981) 903-916.
  42. Olsson, Y., Arvidson, B., Hartman, M., Pettersson, A. and Tengvar, C.
    Horseradish peroxidase histochemistry. A comparison between various methods used for identifying neurons labeled by retrograde axonal transport, J. Neurosci. Methods, 7 (1983) 49-59
  43. Onteniente, B., Menetrey, D., Arai, R. and Calas, A.
    Origin of the Met-enkephalinergic innervation of the lateral septum in the rat, Cell Tissue Res., 256 (1989) 585-592.
  44. Pieribone, V.A. and Aston-Jones, G.
    The iontophoretic application of Fluoro-Gold for the study of afferents to deep brain nuclci, Brain Research, 475 (1988) 259-271.
  45. Priestley, J.V., Somogyi, P. and Cuello, A.C.
    Neurotransmitterspecific projection neurons revealed by combining PAP immunohistochemistry with retrograde transport of HRP, Brain Research, 220 (1981) 231-240.
  46. Rye, D.B., Saper, C.B. and Wainer, B.H.
    Stabilization of the tetramethylbenzidine (TMB) reaction product: application for retrograde and anterograde tracing, and combination with immunohistochemistry, J. Histochem. Cytochem., 32 (1984) 1145-1153.
  47. Sawchenko, P.E. and Swanson, L.W.
    A method for tracing biochemically defined pathways in the central nervous system using combined fluorescence retrograde transport and immunohistochemistry techniques, Brain Research, 210 (1981) 31-51.
  48. Schmued, L.C. and Fallon, J.H.
    Fluoro-Gold: a new fluorescent retrograde axonal tracer with numerous unique properties, Brain Research, 377 (1986) 147-154.
  49. Shapiro, R.E. and Miselis, R.R.
    The central connections of the area postrema of the rat, J. Comp. Neurol., 234 (1985) 344-364.
  50. Shiosaka, S., Shimada, S. and Tohyama, M.
    Sensitive doublelabeling technique of retrograde biotinized tracer (biotin-WGA) and immunocytochemistry: light and electron microscopic analysis, J. Neurosci. Methods, 16 (1986) 9-18.
  51. Skirboll, L., Hokfelt, T., Norell, G., Phillipson, O., Kuypers, H.G.J.M., Bentivoglio, M., Catsman-Berrevoets, C.E., Visser, T.J., Steinbusch, H., Verhofstad, A., Cuello, A.C., Goldstein. M. and Brownstein, M.
    A method for specific transmitter identification of retrogradely labeled neurons: immunofluorescence combined with fluorescence tracing, Brain Res. Rev., 8 (1984) 99-127.
  52. Stockel, K., Schwab, M.E. and Thoenen, H.
    Role of gangliosides in the uptake and retrograde axonal transport of cholera and tetanus toxin as compared to nerve growth factor and wheat germ agglutinin, Brain Research, 132 (1977) 273-285.
  53. Trojanowsky, J.Q.
    Native and derivatized lectins for in vivo studies of neuronal connectivity and neuronal cell biology, J. Neurosci. Methods, 9 (1983) 185-204.
  54. Trojanowsky, J.Q., Gonatas, J.O. and Gonatas, N.K.
    Horseradish peroxidase (HRP) conjugates of cholera toxin and lectins are more sensitive retrogradely transported markers than free HRP, Brain Research, 231 (1982) 33-50.
  55. Van der Kooy, D. and Kuypers, H.G.J.M.
    Fluorescent retrograde double labeling: axonal branching in the ascending raphe and nigral projections, Science, 204 (1979) 873-875.
  56. Van der Kooy, D. and Steinbusch, H.W.M.
    Simultaneous fluorescent retrograde axonal tracing and immunofluorescent characterization of neurons, J. Neurosci. Res., 5 (1980) 479-484.
  57. Wan, X.S., Trojanowsky, J.Q. and Gonatas, J.O.
    Cholera toxin and wheat germ agglutinin conjugates as neuroananatomical probes: their uptake and clearance, transganglionic and retrograde transport and sensitivity, Brain Research, 243 (1982) 215-224.
  58. Yoshimoto, T, Sakai, K., Luppi, RH., Fort, P., Salvert, D. and Jouvet, M.
    Forebrain afferents to the cat posterior hypothalamus: a double labeling study, Brain Res. Bull., 23 (1989) 83-104.
  59. Yoshimoto, T., Sakai, K., Panula, P., Salvert, D., Stuart, M. ant Jouvet, M.
    Cells of origin of histaminergic afferents to the ca median eminence, Brain Research, 504 (1989) 149-153.
  60. Yoshimoto, T., Sakai, K., Luppi, P.H., Fort, P., Salvert, D. ant Jouvet, M.
    Catecholaminergic afferents to the cat mediar eminence as determined by double-labeling methods, Neuroscience, 36 (1990) 491-505.